smps.fit.LogNormalFitResults#

class smps.fit.LogNormalFitResults(params, error_matrix, fittedvalues, modes, **kwargs)#

Fit parameters for the LogNormal distribution.

This class is returned by the LogNormal model and is not typically created from scratch.

Parameters
paramsarray-like

The parameters of the fitted model as an array.

error_matrixarray-like

The error matrix for the params.

fittedvaluesarray-like

The fitted values from the LogNormal model.

modesint

The number of modes fit.

predict(X, weight='number')#

Predict new values using the fit model.

Parameters
Xarray-like

An array of particle diameters at which to predict the number concentration based on the fit model.

weight: str, default=’number’

The moment of the model to fit at. Should be one of (‘number’, ‘surface’, ‘volume’).

Returns
An array of number concentrations.

Examples

Predict the number concentration at 1 and 2.5 µm:

>>> from smps.fit import LogNormal
>>>
>>> model = LogNormal()
>>>
>>> results = model.fit(obj.midpoints, obj.dndlogdp.mean(), modes=1)
>>> 
>>> results.predict([1., 2.5])     
summary()#

Summary statistics for the fit LogNormal model.

Returns
statsmodels.iolib.table.SimpleTable

Examples

>>> from smps.fit import LogNormal
>>>
>>> model = LogNormal()
>>>
>>> results = model.fit(obj.midpoints, obj.dndlogdp.mean(), modes=1)
>>> results.summary()