smps.fit.LogNormalFitResults.predict#
- LogNormalFitResults.predict(X, weight='number')#
Predict new values using the fit model.
- Parameters
- Xarray-like
An array of particle diameters at which to predict the number concentration based on the fit model.
- weight: str, default=’number’
The moment of the model to fit at. Should be one of (‘number’, ‘surface’, ‘volume’).
- Returns
- An array of number concentrations.
Examples
Predict the number concentration at 1 and 2.5 µm:
>>> from smps.fit import LogNormal >>> >>> model = LogNormal() >>> >>> results = model.fit(obj.midpoints, obj.dndlogdp.mean(), modes=1) >>> >>> results.predict([1., 2.5])